# Lesson 10. The Principle of Optimality and Formulating Recursions

### 0 Warm up

**Example 1.** Consider the following directed graph. The labels on the edges are edge lengths.



In this order:

a. Find a shortest path from node 1 to node 8. What is its length?

Path: Length:

Length:

b. Find a shortest path from node 3 to node 8. What is its length?

Path:

Length:

c. Find a shortest path from node 4 to node 8. What is its length?

Path:

# 1 The principle of optimality

• Let *P* be the path  $1 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 7 \rightarrow 8$  in the graph for Example 1

 $\circ~$  P is a shortest path from node 1 to node 8, and has length 10  $\,$ 

• Let P' be the path  $3 \rightarrow 4 \rightarrow 6 \rightarrow 7 \rightarrow 8$ 

o P' is a **subpath** of P with length 8

• Is P' a shortest path from node 3 to node 8?

 $\circ~$  Suppose we had a path Q from node 3 to node 8 with length <8

• Let R be the path consisting of edge (1,3) + Q

 $\circ$  Then, R is a path from node 1 to node 8 with length

Length:

 $\circ~$  This contradicts the fact that

o Therefore,

| The principle of optimality (for shortest path problems | The pr | inciple | of optin | nality (fo | r shortest | path | problems' |
|---------------------------------------------------------|--------|---------|----------|------------|------------|------|-----------|
|---------------------------------------------------------|--------|---------|----------|------------|------------|------|-----------|

In a directed graph with no negative cycles, optimal paths must have optimal subpaths.

- How can we exploit this?
- Suppose we want to find a shortest path
  - $\circ$  from source node *s* to sink node *t*
  - $\circ$  in a directed graph (N, E)
  - ∘ with edge lengths  $c_{ij}$  for  $(i, j) \in E$
- We consider the **subproblems** of finding a shortest path from node i to node t, for every node  $i \in N$
- By the principle of optimality, the shortest path from node *i* to node *t* must be:

edge (i, j) + shortest path from j to t for some  $j \in N$  such that  $(i, j) \in E$ 

#### 2 Formulating recursions

• Let

f(i) = length of a shortest path from node i to node t for every node  $i \in N$ 

- $\circ$  In other words, the function f defines the optimal values of the subproblems
- A recursion defines the value of a function in terms of other values of the function
- Using the principle of optimality, we can define f recursively by specifying
  - (i) the boundary conditions and
  - (ii) the recursion
- The boundary conditions provide a "base case" for the values of f:

• The recursion specifies how the values of *f* are connected:

| the grap       | h for Example 1. Use your computations to find a shortest path from node 1 to node 8. |
|----------------|---------------------------------------------------------------------------------------|
| f(8) =         |                                                                                       |
| f(7) =         |                                                                                       |
| <i>f</i> (6) = |                                                                                       |
| <i>f</i> (5) = |                                                                                       |
| f(4) =         |                                                                                       |
| f(3) =         |                                                                                       |
| f(2) =         |                                                                                       |
| f(1) =         |                                                                                       |
| Shortest       | path from node 1 to node 8:                                                           |
|                |                                                                                       |
|                |                                                                                       |
|                |                                                                                       |

**Example 2.** Use the recursion defined above to find the length of a shortest path from nodes 1, ..., 8 to node 8 in

# • Food for thought:

- Does the order in which you solve the recursion matter?
- Why did the ordering above work out for us?

### 3 Next lesson...

- Dynamic programs are not usually given as shortest/longest path problems as we have done over the past few lessons
- Instead, dynamic programs are usually given as recursions
- We'll get some practice using this "standard language" to describe dynamic programs

## **A** Problems

**Problem 1** (Shortest path recursions). Consider the following directed graph. The edge labels correspond to edge lengths.



Use the recursion for the shortest path problem defined in Lesson 10 to

- (i) Find the length of a shortest path from nodes 1, ..., 10 to node 10.
- (ii) Find a shortest path from node 1 to node 10.