Lesson 10. The Principle of Optimality and Formulating Recursions

0 Warm up

Example 1. Consider the following directed graph. The labels on the edges are edge lengths.

In this order:
a. Find a shortest path from node 1 to node 8 . What is its length?
\square
b. Find a shortest path from node 3 to node 8 . What is its length?
\square
Length:
c. Find a shortest path from node 4 to node 8 . What is its length?
\square

1 The principle of optimality

- Let P be the path $1 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 7 \rightarrow 8$ in the graph for Example 1
- P is a shortest path from node 1 to node 8 , and has length 10
- Let P^{\prime} be the path $3 \rightarrow 4 \rightarrow 6 \rightarrow 7 \rightarrow 8$
- P^{\prime} is a subpath of P with length 8
- Is P^{\prime} a shortest path from node 3 to node 8 ?
- Suppose we had a path Q from node 3 to node 8 with length <8
- Let R be the path consisting of edge $(1,3)+Q$
- Then, R is a path from node 1 to node 8 with length
- This contradicts the fact that
- Therefore,

The principle of optimality (for shortest path problems)

In a directed graph with no negative cycles, optimal paths must have optimal subpaths.

- How can we exploit this?
- Suppose we want to find a shortest path
- from source node s to sink node t
- in a directed graph (N, E)
- with edge lengths $c_{i j}$ for $(i, j) \in E$
- We consider the subproblems of finding a shortest path from node i to node t, for every node $i \in N$
- By the principle of optimality, the shortest path from node i to node t must be:

$$
\text { edge }(i, j)+\text { shortest path from } j \text { to } t \quad \text { for some } j \in N \text { such that }(i, j) \in E
$$

2 Formulating recursions

- Let

$$
f(i)=\text { length of a shortest path from node } i \text { to node } t \text { for every node } i \in N
$$

- In other words, the function f defines the optimal values of the subproblems
- A recursion defines the value of a function in terms of other values of the function
- Using the principle of optimality, we can define f recursively by specifying
(i) the boundary conditions and
(ii) the recursion
- The boundary conditions provide a "base case" for the values of f :
- The recursion specifies how the values of f are connected:

Example 2. Use the recursion defined above to find the length of a shortest path from nodes $1, \ldots, 8$ to node 8 in the graph for Example 1. Use your computations to find a shortest path from node 1 to node 8.
$f(8)=\square$
$f(7)=\square$
$f(6)=\square$
$f(5)=\square$
$f(4)=\square$
$f(3)=\square$
$f(2)=\square$
$f(1)=\square$

Shortest path from node 1 to node 8 :

- Food for thought:
- Does the order in which you solve the recursion matter?
- Why did the ordering above work out for us?

3 Next lesson...

- Dynamic programs are not usually given as shortest/longest path problems as we have done over the past few lessons
- Instead, dynamic programs are usually given as recursions
- We'll get some practice using this "standard language" to describe dynamic programs

A Problems

Problem 1 (Shortest path recursions). Consider the following directed graph. The edge labels correspond to edge lengths.

Use the recursion for the shortest path problem defined in Lesson 10 to
(i) Find the length of a shortest path from nodes $1, \ldots, 10$ to node 10 .
(ii) Find a shortest path from node 1 to node 10.

